Part Number Hot Search : 
HDF0515D P6KE1 4580D TX1N5 58110 4CX1500 AX5190 PNZ121S
Product Description
Full Text Search
 

To Download IRFR825PBF-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr825trpbf 12/19/12 www.irf.com 1 hexfet   power mosfet features and benefits ? 
               ?                 ? !             
 applications ?      "# ? $    #   ? "%    pd - 96433a s d g notes   through  are on page 2 d-pak irfr825trpbf    absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 6.0 i d @ t c = 100c continuous drain current, v gs @ 10v 3.9 a i dm pulsed drain current 24 p d @t c = 25c power dissipation 119 w linear derating factor 1.0 w/c v gs gate-to-source voltage 20 v dv/dt peak diode recovery dv/dt  9.9 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds diode characteristics parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) a showing the i sm pulsed source current integral reverse (body diode)  p-n junction diode. v sd diode forward voltage ??? ??? 1.2 v t j = 25c, i s = 6.0a, v gs = 0v  t rr reverse recovery time ??? 92 138 ns t j = 25c, i f = 6.0a ??? 152 228 t j = 125c, di/dt = 100a/ s  q rr reverse recovery charge ??? 167 251 nc t j = 25c, i s = 6.0a, v gs = 0v  ??? 292 438 t j = 125c, di/dt = 100a/ s  i rrm reverse recovery current ??? 3.6 5.4 a t on forward turn-on time 300 (1.6mm from case ) intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) ??? ??? ??? ??? 6.0 24 t j = 25c, i s = 6.0a, v gs = 0v di/dt = 100a/ s  v dss r ds(on) typ. trr typ. i d 500v 1.05 92ns 6.0a

 2 www.irf.com  repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)  starting t j = 25c, l = 40mh, r g = 25 ,i as = 3.0a. (see figure 13).  i sd = 6.0a, di/dt 416a/ s, v dd v (br)dss ,t j 150c.  pulse width 300 s; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss .    
    
   when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniquea refer to applocation note # an- 994 echniques refer to application note #an-994. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 500 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.33 ??? v/c r ds(on) static drain-to-source on-resistance ??? 1.05 1.3 .0 .0 a ??? ??? 2.0 ma i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 dynamic @ t j = 25c (unless otherwise specified) parameter min. typ. max. units gfs forward transconductance 7.5 ??? ??? s q g total gate charge ??? ??? 34 q gs gate-to-source charge ??? ??? 11 nc q gd gate-to-drain ("miller") charge ??? ??? 14 t d(on) turn-on delay time ??? 8.5 ??? t r rise time ??? 25 ??? ns t d(off) turn-off delay time ??? 30 ??? t f fall time ??? 20 ??? c iss input capacitance ??? 1346 ??? c oss output capacitance ??? 76 ??? c rss reverse transfer capacitance ??? 15 ??? c oss output capacitance ??? 1231 ??? pf c oss output capacitance ??? 25 ??? c oss eff. effective output capacitance ??? 51 ??? c oss eff. (er) effective output capacitance (energy related) avalanche characteristics parameter typ. units e as single pulse avalanche energy ??? mj i ar avalanche current  ??? a e ar repetitive avalanche energy  ??? mj thermal resistance parameter typ. units r  ??? r  ??? c/w r = = 0 a v ds = 500v, v gs = 0v v ds = 400v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 3.7a  v gs = 20v conditions v ds = 50v, i d = 3.7a v gs = -20v i d = 6.0a v ds = 400v v gs = 10v, see fig.14a &14b  v dd = 250v i d = 6.0a r g =7.5 v gs = 10v, see fig. 15a & 15b  v gs = 0v v ds = 25v ? = 1.0khz, see fig. 5 3 11.9 max. 178 v gs = 0v,v ds = 0v to 400v  v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 400v, ? = 1.0mhz 110 max. 1.05 50 ??? 43 ??? na

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.8v 5.5v bottom 5.3v 60 s pulse width tj = 25c 5.3v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 150c 5.3v vgs top 15v 10v 8.0v 7.0v 6.0v 5.8v 5.5v bottom 5.3v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 50v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 6.0a v gs = 10v

 4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage fig 6. typ. breadown voltage vs. temperature 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 khz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 500 525 550 575 600 625 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1ma 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-to-drain voltage (v) 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0 5 10 15 20 25 30 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 400v v ds = 250v vds= 100v i d = 6.0a

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 9. typical rdson vs. drain current 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 024681012 i d , drain current (a) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ) v gs = 10v 25 50 75 100 125 150 t c , case temperature (c) 0 1 2 3 4 5 6 7 i d , d r a i n c u r r e n t ( a )

 6 www.irf.com fig 13. maximum avalanche energy vs. drain current fig 12. maximum safe operating area fig 14a. gate charge test circuit fig 14b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.59a 1.02a bottom 3.0a 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc

 www.irf.com 7 fig 16. 
  

  for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    

   + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
 fig 15a. switching time test circuit fig 15b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f   '( 1 )  $
  0.1         + -    

 8 www.irf.com 
  
 
  

 

 
  int ernational ass emb led on ww 16, 2001 in the assembly line "a" or note: "p" in assembly line position example: lot code 1234 this is an irfr120 with assembly i ndi cates "l ead- f r ee" product (optional) p = designates lead-free a = as s e mb l y s i t e code part number we e k 16 dat e code year 1 = 2001 rectifier international logo lot code as s e mb l y 34 12 irfr120 116a line a 34 rectifier logo irfr120 12 assembly lot code year 1 = 2001 dat e code part number week 16 "p" in ass embly line position indicates "l ead- f r ee" qual i fi cati on to the cons umer - l evel p = designates lead-free product qualified to the consumer level (optional) note: for the most current drawing please refer to ir website at http://www.irf.com/package/

 www.irf.com 9 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 101n.sepulveda blvd, el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/2012  
       

 

 
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR825PBF-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X